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In this Brief Report, by analyzing the spectral properties of the Laplacian matrix of Erdös-Rényi networks,
we obtained the critical coupling strength of the complete synchronization analytically. In particular, for any
size of the networks, when the average degree is greater than a threshold and the coupling strength is large
enough, the networks can synchronize. Here, the threshold is determined by the value of the maximal
Lyapunov exponent of each dynamical unit.

DOI: 10.1103/PhysRevE.72.037101 PACS number�s�: 89.75.Hc, 05.45.Xt, 05.10.�a

Recently, it is clear that complex networks give a good
description of diverse systems such as the Internet, neural
networks, metabolic systems, and power grid �1–3�. Many of
the studies focused on the topological properties such as de-
gree distribution, clustering structure, and geographical con-
straints �4–6�; meanwhile, various dynamics on complex net-
works are also investigated �7–9�. Underlying those
researches is the implication that the topological properties
of a network must have some influence on the dynamics
taking place on it �10�.

As one of the simplest collective dynamics, synchroniza-
tion of coupled nonlinear oscillators is studied on various
networks through numerical experiments as well as analyti-
cal methods. Early studies of synchronization are restricted
to networks of globally coupled units and simple networks
with some symmetry �11–13�, but the structure of the real-
world network is generally more complex. Recently, Pecora
and Carrol obtained the exact results of synchronization for
networks with a general structure �14�. In their paper, they
promoted a linear stability condition of synchronization on
arbitrary coupling networks and the critical coupling strength
can be obtained by finding the solution of the master stability
equations. The solutions are not explicitly related to the fun-
damental parameters of the networks such as the network
size, the average degree. And the size of networks are gen-
erally enormous, to solve the equations usually will cost
much time and computer resource. Recently many works
have been done to find the shortcuts from the network pa-
rameters to the critical coupling strength �15–18� for differ-
ent network models. Then, it will be helpful to understand
how the topological properties of the network affect the syn-
chronization, if one can obtain a direct solution.

In this paper, we study the synchronization on the Erdös-
Rényi �ER� network. By analyzing the spectral properties of
the Laplacian matrix of the networks, we give an approxi-
mate expression of critical coupling strength related only
with the network size N and the average degree �k�. Numeri-
cal results are also obtained, and well consistent with our
analytical formula.

Consider an ER network of N identical, linearly and dif-
fusively coupled nodes, each pair of nodes being connected

with probability p, and the average degree is Np. Each node
is an m-dimensional discrete dynamical system

xn+1
i = f�xn

i � +
�

ki
�
j=1

N

�i,j f�xn
j � , �1�

where ki is the degree of node i , xn
i is the state of the node i

at time n ,� is the coupling strength, and � is the Laplacian
matrix

�i,j = �− ki, i = 1,

1, if node i connects node j ,

0, otherwise.
	 �2�

This model can be extended straightforwardly to time-
continuous case.

We then rewrite Eq. �1� in the following form

xn+1
i = f�xn

i � + ��
j=1

N

�i,j f�xn
j � , �3�

where �i,j =�i,j /ki. The linear stability of synchronization of
this system is determined by the eigenvalues of the matrix �
�14�. The eigenvalues of � are real and nonpositive �19�, we
write them as −�k, and then the eigenvalue equation is

�ui + �iui = 0. �4�

We order the eigenvalues as 0=�1��2� ¯ ��N−1��N.
The eigenvalue �1 is a simple eigenvalue, since we assume
that the network is connected �19�.

The synchronization state of this system is stable if

1 − e−�

�2
� � �

1 + e−�

�N
, �5�

where � is the largest Lyapunov exponent of f �19�. When N
is large, and the degree of each node could be regarded as the
same: pN, then we have

� 
 A/�Np� − 1, �6�

where A is the adjacency matrix of the network.
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We denote the eigenvalues of A as �̄N��̄N−1� ¯ �̄2

��̄1. From �6�, the eigenvalues of � are obtained

�i 
 − �̄i/�Np� + 1. �7�

When N→	 the spectral density of the adjacent matrix A
�with connecting probability p� converges to a semicircular
distribution �20�


��� = ��4Np�1 − p� − �2

2�Np�1 − p�
, if ��� � 2�Np�1 − p� ,

0, otherwise.
	 �8�

The largest eigenvalue �̄1 is isolated from the bulk of the
spectrum, and it increases with the network size as pN. This

means that �̄n
−2�Np�1− p�, �̄2
2�Np�1− p�. It is easy to
see that

�2 
 1 − 2��1 − p�/�Np� ,

�n 
 1 + 2��1 − p�/�Np� . �9�

Substituting �9� into �3�, the stability condition of synchroni-
zation becomes

1 − e−�

1 − 2��1 − p�/�Np�
� � �

1 + e−�

1 + 2��1 − p�/�Np�
. �10�

In order to satisfy this condition, we need

1 + 2��1 − p�/�Np�

1 − 2��1 − p�/�Np�
�

1 + e−�

1 − e−� . �11�

�Since in most relevant cases, the upper limit �1+e−�� / (1
+2��1− p� / �Np�) is greater than 1, so in the following, we
just discuss the lower limit �1−e−�� / (1−2��1− p� / �Np�)�.

To verify the above analytical formula �10�, we also give
numerical results. In this paper, we work with the logistic
map f�x�=1−ax2 and choose values of a such that the dy-
namics of individual map is chaotic. Here, the critical cou-
pling strength for different connectivity probability and dif-
ferent a is shown by both numerical simulation and
analytical computation in Fig. 1. We can see that our formula
gives a precise result.

From our analytical expression of the critical coupling
strength, we can strictly deduce some conclusions.

�1� p→1, Eq. �10� becomes

� � 1 − e−�, �12�

consistent with the result of globally coupled network �GCN�
�21�.

�2� Keep p fixed, and let N→	, Eq. �10� can also be
rewritten as

� � 1 − e−�,

which implies that in this limit, the behavior of this system
would be equivalent to that of a GCN.

FIG. 1. Critical coupling strength of synchronization on ER net-
works for different a �a=1.6 for triangles, 2.0 for circles� and dif-
ferent connectivity probability p, as the x axis shows. The curves
are the corresponding analytical results. Averaged over 1000 net-
work realizations and initial conditions, N=1000.

FIG. 2. Critical coupling strength of synchronization for differ-
ent connectivity probability p �p=0.2 for squares, 0.5 for circles,
and 0.8 for triangles�. We can see that when N→	, networks with
different connectivity probability have the same critical coupling
value of synchronization, i.e., the value of GCN.

FIG. 3. The fluctuation  for different �k�, for N=2000, �=1.0
�a� a=1.9 and �b� a=2.0.

BRIEF REPORTS PHYSICAL REVIEW E 72, 037101 �2005�

037101-2



Under the same limit condition, the mean-field approxi-
mation holds, Eq. �1� can be rewritten as

xn+1
i = f�xn

i � +
�

N
�
j=1

N

�f�xn
j � − f�xn

i �� ,

which is just the dynamics of GCN. We obtain the same
result as deduced by the above analytical method. This result
was obtained by simulation in �22�. In Fig. 2, we show that
in the limit N→	, networks with different connectivity
probability p all approach the critical value of GCN.

�3� Let k=Np, �=1, Eq. �10� becomes

1 − e−�

1 − 2�1/k − 1/N
� 1. �13�

When N�k, we obtain

1 − e−�

1 − 2�1/k
� 1, �14�

or

k � K = 4e2�, �15�

which implies that for ER random networks, one can have
chaotic synchronization for arbitrary system size, if the cou-
pling is strong enough, i.e., �=1 and if the average degree is
larger than some threshold determined by the value of the
maximal Lyapunov exponent of the individual dynamics. In

�19�, the authors gave an experimental result for this. They
said that for the quadratic map �i.e., f�x�=1−ax2�, when a
=2.0, �=1, and average degree is greater than 16, or when
a=1.9, �=1, and the average degree is greater than 12, the
system can synchronize for arbitrary large size N. Here we
can analytically obtain above results. When a=2.0 the
largest Lyapunov exponent is ln 2, according to �15�, the
critical average degree K is 16, and when a=1.9 the larg-
est Lyapunov exponent is 0.55, so the corresponding K is
12, consistent with the experimental result �19�. Here we
show the fluctuation  as a function of �k� for N=2000,
�=1.0, a=1.9 �Fig. 3�a��, and a=2.0 �Fig. 3�b��. In each
grid corresponding to a particular �k� value, we plot 2000
steps of  after initial transients.

In conclusion, we have derived accurate analytical results
for the threshold of synchronization in the ER random net-
work. Our results also show that once the average degree is
greater than a particular value, the network of arbitrary size
can always be synchronous with strong enough coupling.
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